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1 The Higgs Mechanism

We begin by applying the Higgs mechanism to an abelian, U(1) gauge theory, to demonstrate
how the mass of the corresponding gauge boson (the photon) comes about. The abelian example
will then be generalized in a straightforward way to the non-abelian Glashow-Weinberg-Salam
theory (the electroweak Standard Model). It succinctly can be specified as a gauge theory with
the symmetry group SU(2) ⊗ U(1) and describes the weak and electromagnetic interactions
due to the exchange of the corresponding spin 1 gauge fields: three massive bosons, W± and
Z, for the weak interaction, and one massless photon for the electromagnetic interaction. Both
the fermions and the electroweak gauge bosons will obtain their masses through the Higgs
mechanism.

1.1 An Abelian Example

The U(1) gauge invariant kinetic term of the photon is given by

Lkin = −1
4
FµνF

µν , (1)

where
Fµν = ∂µAν − ∂νAµ . (2)

That is, Lkin is invariant under the transformation: Aµ(x)→ Aµ(x)− ∂µη(x) for any η and x.
If we naively add a mass term for the photon to the Lagrangian,

L = −1
4
FµνF

µν +
1
2
m2AµA

µ, (3)

we will soon find out that the mass term violates the local gauge symmetry. The U(1) gauge
symmetry thus requires the photon to be massless.

Now extend the model by introducing a complex scalar field with charge (−e) that couples
both to itself and to the photon:

L = −1
4
FµνF

µν + (Dµφ)† (Dµφ)− V (φ), (4)

where Dµ = ∂µ−ieAµ and V (φ) = −µ2φ†φ+λ(φ†φ)2. It is easily discerned that this Lagrangian
is invariant under the gauge transformations:

Aµ(x) → Aµ(x)− ∂µη(x), (5)

φ(x) → eieη(x)φ(x). (6)
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If µ2 < 0, the state of minimum energy will be that with φ = 0 and the potential will preserve
the symmetries of the Lagrangian. Then the theory is simply QED with a massless photon
and a charged scalar field φ with mass µ.

However, if µ2 > 0, the field φ will acquire a vacuum expectation value (VEV),

〈φ〉 =

√
µ2

2λ
≡ v√

2
, (7)

and the global U(1) gauge symmetry will be spontaneously broken.
It is convenient to parameterize φ as

φ =
v + h√

2
ei
χ
v , (8)

where h and χ, which are referred to as the Higgs boson and the Goldstone boson, respectively,
are real scalar fields which have no VEVs. Substituting (8) back into the Lagrangian, we find

L = −1
4
FµνF

µν − evAµ∂µχ+
e2v2

2
AµA

µ

+
1
2
(
∂µh∂

µh− 2µ2h2
)

+
1
2
∂µχ∂

µχ

+(h, χ interactions). (9)

This Lagrangian now describes a theory with a photon of mass mA = ev, a Higgs boson h with
mh =

√
2µ =

√
2λv, and a massless Goldstone χ. The strange χ–Aµ mixing can be removed

by making the following gauge transformation:

Aµ → A′µ = Aµ −
1
ev
∂µχ . (10)

The gauge choice with the transformation above is called the unitary gauge. The Goldstone
χ will then completely disappear from the theory and one says that the Goldstone has been
eaten to give the photon mass.

It is instructive to count the degrees of freedom (dof) before and after SSB has occurred.1

We started out with a massless photon (2 dof) and a complex scalar field (2 dof) for a total
number of 4 dof. After the SSB we have one massive photon (3 dof) and a real scalar field h
(1 dof), again for a total of 4 dof.

1.2 The Higgs mechanism in the Electroweak Standard Model

Now we discuss a gauge theory that contains the combined electromagnetic and weak interac-
tions, which is generally referred to as the electroweak unification. The electroweak Standard
Model is based on the SU(2)⊗ U(1) Lagrangian

LSM = Lgauge + Lf + LHiggs + LY uk . (11)

The fermion term is
Lf = i Ψ̄L 6D ΨL + i ψ̄R 6D ψR , (12)

1Massless gauge fields have two transverse dof, while a massive gauge field has an additional longitudinal
component.
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where the covariant derivative acts on ΨL and ψR, respectively, as

DµΨL =
(
∂µ + ig Wµ + ig′ YL Bµ

)
ΨL , DµψR =

(
∂µ + ig′ YR Bµ

)
ψR . (13)

The L (R) refer to the left (right) chiral projections ψL (R) = (1∓ γ5)ψ/2. In the electroweak
gauge theory the left-handed quarks and leptons (ΨL)

qL =
(
u

d

)
L

, lL =
(
νe
e−

)
L

are arranged in doublets, while the right handed fields (ψR)

uR, dR, νeR, e
−
R

are singlets. The gauge transformations are

ΨL → Ψ′L = ei YL θ(x) UL ΨL , (14)

ψR → ψ′R = ei YR θ(x) ψR . (15)

The SU(2)L transformation that only acts on the doublet fields is

UL = eiT
iβi(x), (16)

where T i = τ i

2 (τ i are the three Pauli matrices) denote the generators of the fundamental
representation of the SU(2)L Lie algebra, i.e. they comply with[

T i, T j
]

= iεijkT k. (17)

The real and totally antisymmetric εijk are the SU(2)L structure constants.
The transformation properties of Bµ and Wµ (Wµ can be written in terms of the generators:

Wµ = W i
µT

i) are fixed by the gauge symmetry of the fermion Lagrangian. Thus,

Bµ → B′µ = Bµ −
1
g′
∂µθ , (18)

Wµ → W ′µ = ULWµU
†
L +

1
g

(∂µUL)U †L . (19)

Note that the four gauge parameters in the electroweak symmetry, βi(x) and θ(x) respectively
involve three SU(2)L gauge bosons, W i, i = 1, 2, 3, that couple to the weak-isospin T , and
one U(1)Y gauge boson, B, that couples to hypercharge. The electroweak symmetry will turn
out to be spontaneously broken, generating masses for the physical gauge bosons W± and Z.
Also, it will be apparent that the photon and the Z boson are formed by the mixing between
the B and W 3 fields, resulting from the Higgs mechanism.

The values of the hypercharge are fixed in such a way that the sum of the hypercharge and
the third component of the weak-isospin generators of a specific fermion give its electric charge,

Q = T 3 + Y. (20)

For left-handed doublets T 3 is τ3

2 (i.e. T 3 = ±1
2), while for right-handed singlets T 3 = 0. Hence

the hypercharge eigenvalues for the leptons are

Y (lL) = −1
2
, Y (lR) = −1 ,
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and for the quarks we find

Y (qL) =
1
6
, Y (uR) =

2
3
, Y (dR) = −1

3
.

The gauge part is

Lgauge = −1
4
FµνFµν −

1
4
GiµνGiµν , (21)

where

Giµν = ∂µW
i
ν − ∂νW i

µ − gεijkW j
µW

k
ν , (22)

Fµν = ∂µBν − ∂νBµ . (23)

The quadratic G term above gives rise to cubic and quartic self-interactions among the gauge
fields.

As in the case of gauge bosons, it is not possible to simply add a mass term for fermions
to the Lagrangian. Such a Dirac mass term,

m ψ̄ ψ = m(ψ̄L + ψ̄R)(ψL + ψR) = m(ψ̄L ψR + ψ̄R ψL) , (24)

contains couplings of left- and right-handed fields, which have different transformation proper-
ties, spoiling the gauge symmetry.

In the following we will dicuss the mass generation both for the electroweak gauge bosons
and for the fermions through the elaborate mechanism of spontaneous symmetry breaking.

Spontaneous Symmetry Breaking

The abelian example can now be generalized in a straightforward way to a non-abelian gauge
theory. The scalar Higgs part of the Lagrangian is given by

LHiggs = (Dµφ)† (Dµφ)− V (φ) . (25)

To spontaneously break the symmetry, consider a complex scalar field in the spinor represen-
tation of SU(2)L,

φ =
(
φ+

φ0

)
, (26)

with U(1) charge Y (φ) = +1/2. An additional U(1)Y symmetry was needed in order for the
theory to lead to a system with a massless gauge boson. The covariant derivative of φ is

Dµφ =
(
∂µ + ig T iW i

µ + i
1
2
g′Bµ

)
φ , (27)

where W i
µ and Bµ are, respectively, the SU(2)L and U(1)Y gauge bosons. Note that the square

of the covariant derivative involves three and four point interactions between the gauge and
scalar fields.

Renormalizability and SU(2)L ⊗ U(1)Y invariance require the Higgs potential V (φ) to be
of the form

V (φ) = −µ2φ†φ+ λ
(
φ†φ
)2
. (28)

The λ term describes quartic self-interactions among the scalar fields. Vacuum stability de-
mands λ to be greater than zero.
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Just as in the abelian example, the scalar field develops a nonzero VEV for µ2 > 0, which
spontaneously breaks the symmetry. Due to the symmetry of V (φ) there is an infinite number
of degenerate states with minimum energy satisfying φ†φ = v2/2. Since the potential depends
only on the combination φ†φ, we arbitrarily choose

〈φ〉 =
1√
2

(
0
v

)
. (29)

Owing to the conservation of electric charge only a neutral scalar field can acquire a VEV.
Thus, with the choice above, φ0 is to be interpreted as the neutral component of the doublet,
and above all Q(φ) = 0. That is, electromagnetism is unbroken by the scalar VEV. The scalar
VEV of Eq. (29) hence yields the breaking scheme,

SU(2)L ⊗ U(1)Y → U(1)Q , (30)

which is by construction still a true vacuum symmetry.
The W and Z gauge masses can now be generated in the same manner as the Higgs mech-

anism generated the photon mass in the abelian example. Recall from earlier considerations
that in the unitary gauge the spectrum is obvious and there are no Goldstone bosons, but only
the physical Higgs after SSB. For convenience, we thus write the scalar doublet in the unitary
gauge as follows:

φ =
1√
2

(
0

v + h

)
. (31)

Because we are interested only in the contribution for the gauge boson masses, we omit any
h - mixed terms in what follows. The piece generating the gauge boson masses is

(Dµφ)† (Dµφ) =
∣∣∣∣(∂µ +

i

2
gτkW k

µ +
i

2
g′Bµ

)
1√
2

(
0
v

)∣∣∣∣2
=
v2

8

∣∣∣∣(gτkW k
µ + g′Bµ

)( 0
1

)∣∣∣∣2

=
v2

8

∣∣∣∣∣
(
gW 1

µ − igW 2
µ

−gW 3
µ + g′Bµ

)∣∣∣∣∣
2

=
v2

8

[
g2
((
W 1
µ

)2 +
(
W 2
µ

)2)+
(
gW 3

µ − g′Bµ
)2]

.

(32)

The charged vector boson, W−µ , and its complex conjugate are defined as

W±µ ≡
1√
2

(
W 1
µ ∓ iW 2

µ

)
. (33)

Thereby the g2 term in Eq. (32) becomes

1
2

(g v
2

)2
W †µW

µ, (34)

yielding the W mass:
mW =

g v

2
. (35)
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The two remaining neutral gauge bosons, Z and A, are defined as follows:

Zµ ≡
1√

g2 + g′2

(
gW 3

µ − g′Bµ
)

with mass mZ =
v

2

√
g2 + g′2 ,

Aµ ≡
1√

g2 + g′2

(
g′W 3

µ + gBµ
)

with mass mA = 0 .

(36)

It is again instructive to count the degrees of freedom before and after the Higgs mechanism.
At the outset we had a complex doublet φ with four degrees of freedom, one massless B with
two degrees of freedom and three massless W i gauge fields with six for a total number of 12
degrees of freedom. At the end of the day, after SSB we have a real scalar Higgs field h with one
degree of freedom, three massive weak bosons, W± and Z , with nine, and one massless photon
with two degrees of freedom, yielding again a total of 12. One says that the scalar degrees of
freedom have been eaten to give the W± and Z bosons their longitudinal components.

To see how the fermion mass comes about, consider the last missing piece of the final
Lagrangian of the electroweak Standard Model, the Yukawa Lagrangian:

LY uk = Γumnq̄m,L φ̃ un,R + Γdmnq̄m,L φ dn,R

+Γemn l̄m,L φ en,R + Γνmn l̄m,L φ̃ νn,R + h.c. , (37)

with an implicit sum over the family indices m and n. The matrices Γmn describe the so
called Yukawa couplings between the single Higgs doublet φ and the fermions. The Yukawa
Lagrangian is, of course, gauge invariant, as the combinations L̄φR are SU(2)L singlets. Taking
into account that the mass terms should be hyperchargeless, two representations of Higgs fields
with Y = +1

2 and −1
2 are needed to give masses to the down quarks and electrons, and to the

up quarks and neutrinos. As the neutrino has no right-handed partner in the SM, it can not
acquire a mass term through Yukawa coupling.

The representations are

φ =
(
φ+

φ0

)
with Y (φ) = +

1
2
, (38)

and φ̃i = εij φ
∗
j :

φ̃ =
(
φ0∗

−φ−

)
with Y (φ̃) = −1

2
. (39)

Under SU(2) both representations transform as

φi → φ′i = Uij φj , φ̃i → φ̃′i = Uij φ̃j . (40)

The transformation properties of φ̃ is in fact true, since2

φ̃′i = εij φ
′∗
j = εij U

∗
jk φ

∗
k = (U †)kjεij φ∗k = Uil εlk φ

∗
k .

2Note that
(U†)ln(U†)kj εnj = det(U†) εlk ⇒ (U†)kj εij = Uil εlk .
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In principle, all of the fermion masses can now be generated with a single Higgs-doublet by
making use of both φ and φ̃. We do this for the first family as an example:

LY uk = fe l̄L φ eR + fu q̄L φ̃ uR + fd q̄L φ dR + h.c. (41)

Choose

φ =
1√
2

(
0

v + h

)
→ 1√

2

(
0
v

)
⇒ φ̃ =

1√
2

(
v

0

)
, (42)

then the Langrangian takes the form

LY uk =
fe v√

2
(ēLeR + ēReL)︸ ︷︷ ︸

ē e

+
fu v√

2
(ūLuR + ūRuL) +

fd v√
2

(d̄LdR + d̄RdL) , (43)

from which the masses for the fermions in question can be read off:

mi = −fi v√
2
, i = e, u, d . (44)

If we were to compute radiative corrections (e.g. to the Weinberg angle), we would discover
that heavy quarks give rise to large corrections. This result is a direct consequence of a gauge
theory with SSB. In a renormalizable gauge theory without SBB, heavy quarks would decouple
at energy scales much smaller than their masses. However, in the GSW model, the longitudinal
components of the W and Z bosons are generated by the Higgs mechanism, and their coupling
increase with the masses. Thus heavy quarks do not decouple in the SM.

The top quark, due to its large mass, plays an essential role both in and beyond the SM.
Precision measurements of mt set contraints on the masses of particles to which the top quark
makes radiative corrections, including the unobserved Higgs boson and new particles that might
contribute additional radiative corrections. The precision electroweak measurements indicate
that mh ≤ 163 GeV (one-sided 95% confidence level, see [?]), and according to the LEP Higgs
Working Group mh must be heavier than 114.4 GeV (95% confidence level).
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